Transferability of Artificial Neural Networks for Mapping Land Cover of Regional Areas with High Spatial Resolution Imagery
نویسندگان
چکیده
Accurate and frequently updated land cover maps of environmentally protected areas are necessary for the management of legislation programs governed by the EU, national authorities and local environmental schemes. This study has analysed the suitability of Artificial Neural Networks (ANN) for mapping and monitoring land cover over regional areas, such as National Parks, using both hard and soft classification approaches together with the high spatial resolution of multispectral Carterra Geo IKONOS imagery. The study aimed to examine the transferability of remote sensing mapping algorithms over Northumberland National Park (NNP) located in Northern England. The ANNs were trained using ground data of eight different upland vegetation classes and applied to a multispectral IKONOS image of NNP. The ANNs applied consisted of a Multiple Layer Perceptron (MLP), using a conjugate gradient descent, and one hidden layer with a varying number of hidden nodes and combinations of weights. The transferability of ANNs was found to depend on the ability to generalise, which could be improved by applying early stopping in the training process, improving the accuracy of the validation data by an average of 15%. The classification accuracies for validation pixels of the training areas resulted in 80%, but decreased to less than 50% if evaluated against validation pixels acquired from different areas within NNP. Limitations and issues regarding the transferability of MLP ANNs were observed to be significant. Advanced ANN algorithms such as Support Vector Machines were required to enable the use of ANNs for mapping and monitoring land cover.
منابع مشابه
Dust source mapping using satellite imagery and machine learning models
Predicting dust sources area and determining the affecting factors is necessary in order to prioritize management and practice deal with desertification due to wind erosion in arid areas. Therefore, this study aimed to evaluate the application of three machine learning models (including generalized linear model, artificial neural network, random forest) to predict the vulnerability of dust cent...
متن کاملAutomatic Interpretation of UltraCam Imagery by Combination of Support Vector Machine and Knowledge-based Systems
With the development of digital sensors, an increasing number of high-resolution images are available. Interpretation of these images is not possible manually, which necessitates seeking for practical, fast and automatic solutions to solve the environmental and location-based management problems. The land cover classification using high-resolution imagery is a difficult process because of the c...
متن کاملLand Cover Subpixel Change Detection using Hyperspectral Images Based on Spectral Unmixing and Post-processing
The earth is continually being influenced by some actions such as flood, tornado and human artificial activities. This process causes the changes in land cover type. Thus, for optimal management of the use of resources, it is necessary to be aware of these changes. Today’s remote sensing plays key role in geology and environmental monitoring by its high resolution, wide covering and low cost...
متن کاملIntegrated Artificial Neural Network Modeling and GIS for Identification of Important Factor on Groundwater Hydrochemistry (Fe-,Ca2+ and PO4-3)
Background & Aims of the Study: Groundwater resources are a crucial component of the ecosystem. Management and cleanup of contamination from groundwater resources requires a long term strategy and a huge amount of investments. Artificial neural networks (ANN) and Geographic Information System (GIS) can be useful in determining management strategies. To protect these valuable resourc...
متن کاملA Neural Network Image Interpretation System to Extract Rural and Urban Land Use and Land Cover Information from Remote Sensor Data
This paper describes the characteristics of a neural network image interpretation system that is designed to extract both rural land cover and urban land use from high spatial resolution imagery (e.g., digitized aerial photography, IKONOS imagery) and/or from relatively coarse spatial and spectral resolution remote sensor data (e.g., Landsat Thematic Mapper). The system consists of modules that...
متن کامل